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Abstract-A mathematical analysis of a vortex that forms about a line heat source in a region with a 
given constant circulation far from the heat source and the ground is presented. The regions near the 
centerline of the vortex and near the ground, called the core and ground regions respectively, are treated 
separately using boundary-layer approximations. The presence of the ground induces a strong secondary 
flow toward the center of the vortex near the ground. The two regions are joined by matching boundary 
conditions through an intermediate inviscid region far from both the vortex centerline and the ground, 
and by matching the volume flow rates inward near the ground boundary layer and upward in the core 
region. The ground boundary layer has a strong effect on the core region flow. The effect appears to 
increase as viscosity decreases. The results are used to estimate the intensity of the energy source 
necessary to provide enough energy to drive a tornado. The results should also be useful in analyzing 

such phenomena as fire-whirls and electrically driven laboratory vortices. 

NOMENCLATURE 

parameter defining the width of the line 
heat source; 
reduced vertical velocity function ; 
c-derivative of F ; 
reduced radial velocity function ; 
c-derivative of G ; 
reduced tangential velocity function of 
the ground region and reduced vertical 
velocity function of the core region ; 
g-derivative of H ; 
reduced function of G and H in core 
region, equation (3.12a); 
thermal conductivity; 
exponent in the pseudo-similarity 
variables q and c ; 
pressure ; 
reduced pressure ; 
volumetric line heat source; 
line heat source per unit length ; 
radial coordinate; 
reduced function of b, equation (2.6); 
temperature ; 
radial velocity; 
ru; 
tangential velocity; 
vertical velocity ; 
rw; 
extended coordinate, y = z + z, ; 
vertical coordinate. 

Greek symbols 

Q, reduced temperature ; 
4 thermal diffusivity; 

‘I? pseudo-similarity variable; 

t9 
similarity variable ; 

L, 

pseudo-similarity variable; 
circulation far from the vortex ; 

Y9 rv ; 
V, kinematic viscosity; 

6, small parameter ; 
6, boundary-layer thickness of ground 

region ; 
5 Et similarity variable using extended axial 

coordinate. 

Subscripts 

1, dimensional values ; 
0, nondimensional values; 

no subscript is used for stretched variables. 

1. INTRODUCTION 

VORTICES that form about concentrated heat sources 
are important in a variety of contexts. An example 
that comes to mind immediately is the fire-whirl. 
When a local point of intensity occurs in a ground 
fire, perhaps a tree or bush in a burning field, the 
more intense upflow and the resulting convergence 
causes vorticity to concentrate along a vertical line 
above the “hot spot”. The flame is stabilized along 
the axis of the vortex and intensifies, extending high 
above the ground along the vortex axis. 

We became interested in this problem for a 
different reason. We are investigating the possibility 
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that thunderstorm electricity can play a role in the 
generation of tornadoes. It is widely believed that the 
enormous energy required to drive a tornado comes 
from the release of latent heat from moist air drawn 
upwards in the tornado core. However, Vonnegut 
[l] has suggested that tornadoes may derive at least 
a portion of their energy from another source. It has 
been suggested by Vonnegut that electrical dis- 
charges may provide such a source. 

The idea of electrically driven tornadoes is 
obviously speculative. The fact that intense lightning 
generally accompanies tornado-producing weather 
patterns by no means proves the two phenomena 
depend on one another in any way. It has been 
shown, however, that miniature whirlwinds driven 
by electrical discharges can be created in the 
laboratory. One objective here is to model the 
phenomenon mathematically, so that we can dis- 
cover just how much electrical power is necessary to 
drive a large atmospheric vortex. The model also 
serves as an analytical description of certain lab- 
oratory vortices created by electrical discharges such 
as those produced by Wilkins [2], Ryan and 
Vonnegut [3], and Watkins [4]. 

The first experimental verification that laboratory 
vortices could be used to stabilize discharges was 
published by Vonnegut, Moore and Harris [5]. 
Subsequently, there have been a number of studies of 
such vortices. Wilkins [2] investigated the swirling 
flow velocity distribution about an electrical arc that 
he produced in a 25cm dia Plexiglas cylinder 25cm 
high. The cylinder had a 1Ocm dia orifice at the top 
through which air was drawn by a blower. Air 
entered the cylinder through vanes in the cylinder 
walls. The vanes directed the inflow air so that it had 
a tangential component to supply circulation. The 
air then swirled into the center of the cylinder and 
upwards out of the orifice at the top. A continuous 
electrical arc could be maintained between electrodes 
located about 18cm apart at the top and bottom of 
the vortex, but a strong vortex had to be initiated by 
drawing air out the top with the blower before the 
electrical arc could be stabilized along the vortex 
axis. 

Ryan and Vonnegut [3] later reported experimen- 
tal evidence that a vortex could be generated and 
maintained by electrical heating from the arc alone. 
The maintenance of an updraft by an external 
blower was not necessary. Ryan and Vonnegut used 
two different kinds of experimental arrangements to 
generate their vortices. In one case the circulation 
was provided by admitting the air to the vortex 
chamber through louvres in a manner similar to the 
experiments of Wilkins. In another case the vortex 
was created along the axis of a rotating hardware 
cloth cage. The air converged about the arc as it 
passed through the hardware cloth and was given a 
tangential velocity component. In each case the 
buoyancy was produced by electrical heating of air 
by the arc. Vortex stabilized arcs about 1 m in height 
could be maintained. 

Watkins [4] studied the electrical properties of 
arcs created in the manner of Vonnegut and his 
colleagues. He determined that the voltage gradient 
along the arc (and so the heat generation rate 
gradient) was independent of vertical position. 

In this paper we report results of a mathematical 
model of the swirling flow about a line heat source. 
The results are used to estimate the strength and 
frequency of the electrical discharges necessary to 
drive a mature tornado. These estimates are com- 
pared with those published by Watkins [4]. 

2. MATHEMATICAL FORMULATION 
OF THE PROBLEM 

2.1. Problem statement 
Consider the three-dimensional flow in a tornado- 

like vortex, with a core region of large vorticity and 
an outer region where the circulation, f,, is 
constant. Whether the strong vortex is produced and 
maintained by an externally applied suction, as in 
the experiments of Ying and Chang [6] and Wei [7], 
or through thermal convection, the velocity field in 
an inviscid region far from the ground and from the 
vortex center is dominated by the tangential velocity. 
The balance of forces there is characterized by a 
balance between the radial pressure gradient and the 
centrifugal force. Near the center line of the vortex, 
and near the lower boundary, friction plays an 
important role. The objective of this research is to 
obtain a mathematical solution of the equations of 
motion and energy for an intense vortex driven by a 
line heat source. The work presented here is different 
from other research on buoyancy driven vortices 
that currently appears in the literature in two 
important ways. These are the following: 1. The 
vortex in this study is driven by buoyant forces 
created by a line heat source. 2. The present study 
will take account of viscous forces near the vortex 
centerline and also near the lower boundary 
(ground). Most analyses neglect the effects of viscous 
forces at the lower boundary. Including the ground 
layer in the model allows the effect of the intense 
inflow near the ground that occurs in real tornadoes 
to be included in the model. 

2.2. Governing equations 
The components of the dimensionless momentum 

equation in cylindrical coordinates for steady, axi- 
symmetric flow can be written as follows: 

= &To L (YO),“,” - $ (Yo),,+ (YO)Z”ZO 
1 

(2.2) 
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+ r3G - r3~~),, 

Mom+ w,(T,)z,, 

= ~E(r,T,,~)~,fro(To),~,l 

+ --.-3-- exp[ - r$s(z,)‘%f 
s(zf))“2 

tu,x,+ f&J,” = 0‘ 

Subscripts r. and z. refer to differentiation 
respect to these variables. 

(2.3) 

(2.4) 

(2.5) 

with 

The following dimensionless quantities have been 
defined : 

u. = r,u/LU,, y. = r,v/LU,, W, = r,w/LU,, 

L3 = kI-;/4g@z, p. = (p-p,)/pUf, To L T/AT, 

AT = @/zk, s = b/sLJt2, r. = r,/L, (2.6) 

so = ZJL, E = 2nvJT, = 2nl@,, u, = T,/2aL, 

IE = k/PC,. 

In these expressions, u, v, and w are the radial, 
tangential, and vertical velocities, p is the pressure, 8 
is the coefficient of volumetric thermal expansion, cp 
is the constant pressure specific heat, k is the thermal 
conductivity, and T is the difference between the 
local temperature and that far from the vortex. 
Property values are assumed to be constants with 
the exception of the density, which is allowed to vary 
only in the body force term in accordance with the 
Boussinesq approximation. The application of this 
approx~ation to atmospheric systems was discussed 
by Spiegel and Veronis ES]. Although it may not be 
entirely accurate for the description of tornadoes, it 
is certainly accurate for fire whirls and for laboratory 
vortices. 

We have postulated a heat source term of the 
special form : 

e”‘= (2’ -exp[-r:/b(z,)1’2] 
~(z,)“~b 

(2.7) 

where Q’ is the rate at which heat is emitted from the 
source per unit height above the lower surface and b 
is an adjustable constant. This heat source term 
displays the important property that 

1 
m &“(r1,81,z,)2nr, dr, = @(z,). (2.8) 

0 

@(z,) can be chosen to be any function of height 
above the lower bounding surface. By choosing 
various values of b a narrow or wide heat generating 
region can be created while keeping @(z,), the 
vertical gradient of the heat generation rate, con- 
stant. By choosing b to be sufficiently small, a line 
heat source can be approximated. We shall assume 
henceforth that 6’ is a constant. 

The boundary conditions are expressed as: 

U,(O, 20) = ~(0, 20) = (K&(0, zo) = (T,X,(O,.4 = 0 

limit ye = 1, limit (U, and W,) are bounded. 
rrr-m ru+‘m 

(2.9) 

UO(ro, 0) = yo(ro, 0) = Wo(r0,O) = 0. 

2.3. Boundary layers 
When E is small, it is anticipated that the solution 

of (2.1)-(2.5) will yield a narrow vortex along the 
vertical axis with a shallow region of strong inflow 
near the lower boundary. Outside these two 
boundary-layer regions the effects of viscous force 
terms (terms multiplied by E) should be small, and 
the flow characteristic of an inviscid vortex. The 
parameter E may be thought of as the inverse of a 
Reynolds number since E = hv/~, = vJU,L. 

The flow in atmospheric vortices such as tor- 
nadoes and dust devils is undoubtedly turbulent, as 
was the flow in both the core and the ground 
boundary layers of the laboratory vortices of Wei 
[7] and Ying and Chang [6]. In previous studies of 
atmospheric vortices (for example, Kuo [9, lo], 
Serrin [Ill, Gutman [12], ~a~bakhov [13]), the 
viscosity has been treated as a constant, and some 
appropriate value for eddy viscosity used to estimate 
numerical results. The same policy will be adopted 
here. It should be pointed out that the appropriate 
eddy viscosity may be different for the region near 
the vortex and the region near the ground. 

3. THE CORE REGION 

Kuo [9] used a value of 5 m2 s- ’ for v in the 
region near r. = 0. Serrin [ll] suggested that the 
turbulence level in this region is self-regulating and 
the v =O.lI’,/2n. Gutman [12] used 10m2s-‘. 
~a~ba~ov [13] used 100m2 s-l. All these studies 
were concerned with real tornadoes (rather than 
laboratory models). 

When the value of Ta = 47 x lo3 m2 s- 1 observed 
by Lewis and Perkins [14] near the Cleveland 
tornado is used, it is seen that E ranges between 
approximately 0.1 (Serrin’s value) and 0.67 x 10e3 
(Kuo’s value). It may therefore be considered to 
be much smaller than unity. The boundary-layer 
character of the solution referred to above can 
therefore be anticipated. With this in mind, three 
regions will be considered separately ; the region near 
the vortex centerline (core region), the region near 
the ground and away from the centerline (ground 
region), and the “inviscid” region far from both core 
and ground. 

3.1. Boundary-layer equations 
It is expected that in the core region the upward 

velocity is strong within a relatively narrow region 
where viscous effects are important. Using boundary- 
layer arguments, it can easily be shown that when 
terms of order of magnitude E are neglected 
compared with terms of order unity in (2.1~(2.5) the 
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following equations result: 

y2 = r3p, (3.1) 

Uy,+Wy,=r r,,-! 
c 1 

(3.2) 

rU(W/r),+ WW, = r’T+r[r(W/r),], (3.3) 

uT,+wT, 

= (rT,), + s(z;liZ ~ exp[ -r’/s(z)“‘] (3.4) 

u,+w,=o (3.5) 

where r = r&&)“‘, z = zO, U = UJE, y = yO, W 
= W,/(E)‘~* and p = p,& are reduced variables. 

Equations (3.1)-(3.5) are accurate precisely where 
one would expect boundary-layer equations to be 
accurate. They are not expected to be accurate near 
z = 0, for example, where the axial pressure gradient, 
as well as other terms, might be large. 

The boundary conditions are 

U(0, z) = y(0, 2) = W,(O, z) = T,(O, z) = 0 

W(c0, z) = T(co, z) = p(m, z) = 0 (3.6) 

Y(% z) = 1 

3.3. Solution and results 
Equations (3.8)-(3.13) were solved for several 

values of the parameter s. The parameter s is directly 
proportional to b, the parameter that determines the 
width of the heat source at a given height. Solutions 
were obtained for s = 10, 5, l,O.l, and 0.01. 

The results are shown in Figs. 1-3. The dimensionless 
circulation and temperature are plotted against the 

independent variables 5 in Fig. 1. Figure 2 shows the 

dimensionless variables J and H. 

0 4 
{=,/;A 

8 12 
3.2. Similarity variables 

Equations (3.1)-(3.5) can be reduced to a set of 
ordinary differential equations if the following 
changes of variables are made: 

U=G(<), y=y(<), T=0((), t=r/z114 

P = ~~‘*p(c), W = ~z~‘~H([). (3.7) 

When the variables defined by (3.7) are substituted 
into (3.1) through (3.5). the resulting ordinary 
differential equations are as follows: 

y* = (3p’ 

<y” = (J + 1 )y’ 

(3.8) 

(3.9) 

(3.10) 

Ge’-<HP= &Y+@+iexp (3.11) 

where : 

J’= -4H 

J = G-{H. 

(3.12) 

(3.12a) 

The boundary conditions (3.6) require that 

G(0) = y(O) = 0 

H’(0) = P(O) = 0 

y(a) = 1 

H(w) = 0(w) = P(o0) = 0. (3.13) 

Direct integration using the fourth-order Runge- 
Kutta method along with a “shooting method” 
was used to obtain solutions to the equations. 

FIG. 1. Reduced potential temperature and reduced circu- 
lation in the core region. 
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FIG. 2. Reduced vertical and radial velocity. Functions in 

the core region. 
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FIG. 3. Reduced tangential velocity and H/r in the core 
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The dimensionless tangential velocity and the 
vertical velocity variable H/r are shown if Fig. 3. 
Some variation with s is seen to occur when s > 1. At 
smaller values of s the variation in any of the 
dimensionless variables except the dimensionless 
temperature is imperceptible when s decreases. 
Hence, for all the flow parameters it can be assumed 
that values of the parameters when s < 1 adequately 
represent the swirling flow about a line heat source. 

The peak value of upward speed w1 is 

2C,z”2 4/?grlQ’ ‘jZ 
W 1,max - --\--i( . n ( > 

The radial position where the maximum 
speed occurs is 

rl,msx = C,V”~ & ( ! 
l/4 

(3.14) 

tangential 

(3.15) 

and the value of the maximum tangential speed is 

V (3.16) 

The total upward volume flow induced by the heat 
source is proportional to the value of G far from the 
heat source. This can be shown by writing the 
continuity equation for a cylindrical control volume 
about the vortex centerline and allowing the radius 
R to approach infinity. 

When 

s < 1, limit ru = limj’,G (5) = -4.35. (3.17) 
r-m 

Thus, the upward volume flow rate for the case of a 
line heat source is 

ti”,/p = 2n(4.35)vz1. (3.18) 

The volume flow rate increases linearly with the 
distance zr above the ground and the kinematic 
viscosity as more and more air is drawn into the 
vortex. 

4. THE GROUND BOUNDARY LAYER 

An approximate solution of the equations that 
describe the flow in the boundary layer near the 
ground is presented in this section. As was the case 
with the core region equations, certain terms can be 
shown to be negligible at a reasonable distance from 
the origin when E c< 1. However, we have not been 
able to discover a suitable similarity variable for this 
set of differential equations. Nonlinear partial differ- 
ential equations must be solved. 

A technique called the local nonsimilarity method 
described by Sparrow and Yu [15] is used to obtain 
approximate solutions. A detailed discussion of the 
accuracy of the method together with details of the 
computations has been given by Chen [ 161. 

4.1. Boundary-layer equations 
The flow in the boundary layer near the ground is 

expected to be vigorously inward. It is therefore 
expected that U and y will be of order unity while W 

will be considerably smaller. When terms of order E 
are neglected, the equations governing the flow in the 
region near the ground are as follows: 

UU,+WU,-(U2+y2)/r = -r’p,+rU,, (4.1) 

Uy,+ %JZ = ry,* (4.2) 

u,+w,=o (4.3) 

where r = rO, z = zol(w, y = Yo, u = uo, 
W = W,/(E)“~, and p = po. 

The velocity is required to be zero at the ground 
(z = 0). The radial velocity far above the ground is 
that induced in the inviscid region by the core region 
flow. Thus, the mathematical boundary conditions 
are as follows: 

U(r, 0) = y(r, 0) = W(r, 0) = 0, 

U(r, 00) = &G(co), y(r, co) = 1. 
(4.4) 

4.2. Solution of the equations 
Discussion of some characteristics of 

linear partial differential equations is 
under a change of variables. Let 

‘1 = Zr(n-l)/2, ( = r(“+lw 

these non- 
facilitated 

U = r(“+ “G(Q 0, W = r(“’ 1’/2F(q, [) (4.5) 

y = r(“+ “H(Q I;). 

When these definitions are substituted into 
(4.1)-(4.4), there results the equivalent set of partial 
differential equations. 

F,,+(n+l)G+(q)vG,, = (y)iG; W-9 

-G,,,,+nG’+[[y)rlG+F]G,,-H’+$ 

=- (4.7) 

=- (4.8) 

with boundary conditions, 

QO, 0 = G(O, 6) = H(O, i) = 0, 
G(ccl, 0 = U,li2, H(m, i) = X2. (4.9) 

Examination of (4.6)-(4.9) reveals that when n = 
-1, the set of partial differential equations reduces 
to a set of ordinary differential equations. The 
independent variable is Y) = z/r. Therefore, rl = z/r is 
a similarity variable. 

The set of equations that results has been studied 
by Goldshtik [17] and found to have no solution 
satisfying the boundary conditions (4.9). It is easily 
seen that this is the only choice of n that reduces 
(4.6)-(4.8) to a set of ordinary differential equations. 
It is, of course, possible that a similarity variable of 
more complex form might exist. Such a similarity 
variable has not been found. The boundary-layer 
profiles must therefore be treated as being 
nonsimilar. 
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There are a number of techniques that have been 
used with some success to obtain approximate 
solutions for non-similar boundary layers (see 
Rosenhead [18]). The simplest approach is through 
the assumption of local similarity. The terms on the 
RHS of (4.6)-(4.8) are assumed to be negligibly small 
so that the differential equations can be treated 
formally as ordinary differential equations and 
integrated over 9 at particular values of c. The 
obvious advantage of this method is its com- 
putational simplicity. An improved technique has 
been presented by Sparrow and Yu [15]. In this 
technique the terms on the RHS of (4.6)-(4.8) are 
not assumed to be zero, but are estimated instead. 
To accomplich this the terms G:, H; and F: are 
written as g, h and f. Thus (4.6) (4.7) and (4.8) 
become 

F,, = -(n+l)G-~~)~G,,-ji~)~g~4.10) 

G,,,, = nG’+r~~)~G+F]G,, 

-HZ+; + * {Gg 
i 1 

H,,,, = @+l)GH+[(.;‘,qG&,, 

(4.11) 

+ * jGh. 
( > \ 2 

(4.12) 

Differential equations for g, h and f can be obtained 
by differentiating (4.10), (4.11) and (4.12) with 
respect to c. The equations that result are 

f,=-(n+l)g-- q C?& 
! > 

- @l)g - (+?. (4.13) 

g,,,l = 2ngG + [(q)w +f ]G,, 

+~(~)~G+F]g,,-2hH 

+ (F)gG + @){g2 + r$)rGg; (4.14) 

&= (~+l)g~+(~+I)Gh 

+ [(~)-+f]H~, + (cough 

+[e)qG+F]h,,+(T)Gh 

+ !!Jk.! {Gh;. 
( 1 \ 2 

(4.15) 

The assumption is now made that g;, hi and f: are 
small enough to be neglected. Physically, this 
corresponds to estimating the values of G, H; and F: 
at a given value of 5 under the assumption that 
although G, H and F vary with 5, the second 
derivatives of these terms are locally small. 

The set of equations that results is a set of 
ordinary differential equations. Hence, the equations 
can be integrated using the same well-known 
schemes that are used when similarity variables are 
found. An improvement in the accuracy of the 
method can be sought by defining new variables for 
g:, h; and fZ. differentiating again with respect to i, 
and neglecting the terms g::, h, and fez The 
computational appeal of the technique fades rather 
quickly as computer time and memory requirements 
mount, however. Sparrow and Yu [IS] and Sparrow 
and Minkowycz [19) have obtained spectacular 
accuracy in certain applications by differentiating 
only once. 

With g:, h: and f: set equal to zero, (4.10)-(4.15) 
have been solved consistent with the boundary 
conditions: 

F(0, C) = G(0, i) = H(O, i) 

= f(O, 0 = g(0, i) = NO, i) = 0 

G(co, c) = U,<-‘, H(co, [) = i-‘. 

g(G3,~) = -2iJ,<-3, h(w,<) = -21-3. (4.16) 

U, is -4.3%. Solutions were carried out for E = 0.01 
and 0.67 x 1V3, and for the special case of pf = 1. 
This value of n was used strictly for convenience. The 
variable g reduces to z for this case, and a number of 
terms drop out of (4.10)-(4.15). Exact values of y, U 
and W obtained by solving equations (4.6)-(4.8) are 
independent of the choice of n. A partial test of the 
accuracy of the solutions of equations (4.10)-(4.15) 
for n = 1 can be obtained by comparing these results 
to those for some other choice of R. Such a 
comparison is given in Fig. 4 for the cases of r = 5, T 
= 7 and t: = 0.01. The qualitative agreement is 
excellent, although slightly higher radial velocities 
result from 12 = 0.5. 

Using n = 1, equations (4.10)-(4.16) have been 
solved for the radial positions r = 3, r = 5 and r = 7 
for E = 0.01 and for r = 4, 5 and 7 for E = 0.67 

16 

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 
Dimensionless Radial Velocity. u 

FIG. 4. Comparison of radial veIoeity profile near the 
ground, zz = 0.01, various n and r. 
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that attempts to obtain extreme accuracy in com- 
putations involving weather phenomena such as 
tornadoes may not actually improve the agreement 
between the theoretical model and the natural 
phenomenon. The reason for this is that the values of 
certain quantities such as the turbulent viscosity are 
not well known. Thus, the accuracy of the results 
reported in this chapter can be safely regarded as 
being at least as accurate as the knowledge of the 
viscosity. I/ _ _--_-----_-*_* -1 

0 2 4 6 
Dimensionless Radial Position, r 

FIG. 5. Dimensionless mass flux in the ground boundary 
layer and in the core. 

5. MATCHING THE REGIONS 

5.1. The technique used 

x 10e3. The radial mass flow rates in the boundary 
layer are shown plotted as a function of radial 
position in Fig. 5. The upper edge of the boundary 
layer is defined as that position where the radial 
velocity is within 2% of the value in the inviscid 
region. The radial volume flow rate for the case of n 
= 0.5, for r = 5 and r = 7 is also shown for 
comparison for E = 0.01. 

The solution of the core region must now be 
matched with the solution for the ground region in 
such a way that the mutual interaction of the regions 
is taken into account. The vortex affects the ground 
region by creating the pressure gradient that causes 
the strong inflow in the ground boundary layer. The 
mass influx from this layer erupts near the center, 
causing a large vertical velocity at the base of the 
core region. 

As another test of the accuracy of the method, the 
maximum value of g was determined at various 
values of radial position. The results are shown 
plotted as Fig. 6. The values of g, and incidentally, of 
gs are small at values of r greater than about 3 for E 
= 0.01 and 4 for E = 0.67 x 10m3. At smaller values 
of r, the method does not yield accurate results. An 
improved solution, accurate for smaller values of r, is 
presently being developed and will be published in 
the future. 

0.2 

6 

0.1 

0 I 

2 4 6 
Dimensionless Radial Position, r 

The approximate matching of the core and ground 
regions is accomplished in four steps. (1) It is first 
demonstrated that the substitution y, = zr +z,r, z,i 
= constant, leaves the differential equations of 
momentum, continuity and energy for the core 
region unchanged if the heat source term is changed 
to Q”’ = [Q’/rtb(y,)l’Z] exp[ -r:/b(yi)“‘]. The simi- 
larity variable 5, = r/y ‘/4 then reduces the system of 
partial differential equations to ordinary differential 
equations as before. Here y = y,/L. (2) The dimen- 
sionless vertical velocity in the core region at 
zi = 0 is now not zero, but is given by rw 

= 4(z,,lL) 3/4~1/2H(l ). The dimensionless volume 
flow rate upwards ;n the core region at zr = 0 is 
tieJpvL = 4.35 x 2n(z,JL). The dimensionless vol- 
ume flow rate inward in the ground boundary layer 
is shown in Fig. 5 for the cases of E = 0.01 and 0.67 
x 10-3. The dimensionless height (z,, +6,)/L is 
chosen so that these mass flow rates balance. This 
amounts to assuming that the effect of the mass 
influx due to the ground can be modelled by an 
equivalent imaginary heat source that extends below 
the ground. This is an approach similar to that taken 
by Turner [20] in modelling the effect of the lower 
surface on laboratory vortices. (3) The question of 

6 whether the shape of the vertical velocity profile 
induced by the equivalent heat source matches that 
resulting from the eruption of the inward flow is only 
briefly addressed. (4) Finally, the effect on the core 
region solution of the weak downdraft at large radial 
positions induced by the ground boundary layer is 
shown to be very small. 

FIG. 6. Variation of the variable g = G; with radial 
position. 

4.3. Remarks concerning accuracy of the results 

When the approximate solution is accomplished, 
the results are slightly different for the cases of n = 1 

and n = 0.5. However, the qualitative agreement 
between the two is excellent, and the quantitative 
agreement is satisfactory, especially as regards the 
value of the volume inflow rate. While greater 
accuracy is always desirable, it must be pointed out 

5.2. Matching the massjow rates 

When the substitution y = z+(z,,/L) is made in 
(3.1t(3.5) and the heat source term is written as 

0”’ = [Q’/r~Lb(y,)‘/~] exp[ - r:/b(y,)‘/2] 
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the following equations result : 

y2 = r3p, 

+WVO,=r’T+r r 7 
[( >l I r 

r2 
UT,+WT,=(rT,),+L -___ . 

s(yp* exp i 1 4YP2 

iJ,-l-w,=o. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Equations (5.1)-(5.5) are identical to (3.1)-(3.5) 
except that y has replaced z. When z > 0 these 
equations together with the boundary conditions 

U(O,Y) = Y(O,Y) = w,(O,Y) = T,(O,Y) = 0 

limit W(r, y), 7% y), p(r, y) = 0, (5.6) 
r-m 

limit y = 1 
r-m 

describe a physical situation wherein above the 
origin there is a vortex about a line heat source. The 
vertical velocity is not zero when z is zero, but is the 
velocity that would result from extending the heat 
source a distance z, below z = 0. 

When the similarity variables defined by (3.7) are 
applied (replacing z by v) the ordinary differential 
equations that result are the same as (3.8k(3.12), 
and the boundary conditions are those given by 
(3.13). The solution of these equations was accom- 
plished in Section 3. 

Suppose the vertical velocity at z =6,/L = 6 a 
small distance above z = 0 comes not from an 
imaginary heat source extending below the origin, 
but from the negative radial velocity generated 
through the interaction of the potential vortex 
outside the core region with the ground as described 
in Section 4. The volume flow rates inward through 
the ground boundary layer and upward through the 
base of the core can be balanced by choosing z,+6 
properly. The bulk flow, but not necessarily the 
details of the velocity distributions, will then be 
matched. 

The matching has been carried out specifically for 
the cases of E = 0.01 and E = 0.67 x lo-‘. The values 
were chosen as being representative values for 
tornadoes, because they lie between the extremes 
used by Kuo (E = 0.67 x 10m3) and by Serrin (E 
= 0.1) and are still much smaller than unity. The 
volume flow rate upward in the core region is given 
by (3.18). The radial position marking the edge of 
the core boundary as defined by the location when 
W = 0.01 W(O,y) is rl/L = 10.4(y1/L)1/4P. Solving 
for y, and substituting it for r1 (3.18) gives an 
expression for the upward volume flow rate in the 
core as a function of the core boundary-layer 
thickness. In dimensionless form, 

!!!!E = 8+7&!& 
PVL * & 

When this equation is plotted in Fig. 5 for E = 0.01 
and E = 0.67 x 10e3, the value of r at which the 
curves cross the radial mass flow rate curves is the 
core boundary-layer thickness at z = 6. The cor- 
responding value of z,+6 can then be determined 
from (3.18). The value for the case of E = 0.01 is z, 
+6 = 4.3. When E = 0.67 x 10e3, the value is .r,+6 
= 17.2. 

The determination of the crossing point for the 
case of E = 0.67 x 1O-3 requires a large extrapolation 
of the ground boundary-layer mass flow rate curve, 
while the case of E = 0.01 requires only a fairly short 
extrapolation. It was not possible to compute values 
of the dimensionless mass flow rates for smaller 
values of radial position than those shown by the 
method used here because of the very large computer 
time and memory requirements. It was pointed out 
in Section 4 that the value of g (the term neglected in 
the two equation group calculation procedure) 
becomes very large when r is small. A three or four 
equation group technique may be required for 
analytical investigation of the flow behavior at small 
values of r, Experimental data of Wei [7] and of 
Ying and Chang [6] as well as the computations for 
E = 0.01 support the contention that the boundary- 
layer thickness and the inflow within the boundary 
layer remain very nearly constant until the tangential 
velocity begins to depart from the potential flow 
values. At that point the flow begins to erupt 
upwards into the vortex core. While both experimen- 
tal data and analytical results for the larger values of 
E indicate that the extrapolation is reasonably 
accurate, the value of z,+6 for this case must be 
used with some care. 

5.3. Remarks about the up~ow near the axis 
In the region near the axis the flow above the 

ground is nearly solid body rotation. At larger values 
of radial position the tangential velocity reaches a 
maximum value, and finally approaches r,/2ar, the 
potential flow value. Experimental results of Turner 
[20] as well as the approximate analyses of Kuo [lo] 
and Carrier et al. [21] indicate that the region of 
upflow from the boundary layer beneath a combined 
Rankine vortex extends approximately to the radial 
location where the tangential velocity first departs 
appreciably from potential flow. In particular, the 
experiments of Turner [20] show a bell-shaped axial 
velocity profile with strong upflow near the center. 
The velocity becomes weakly negative at approxi- 
mately twice the radius of maximum tangential 
velocity. Kuo [lo], on the other hand, predicts a 
maximum vertical velocity slightly away from the 
axis. The velocity then decreases and becomes 
weakly negative in the potential flow region. It may 
be anticipated that the details of the vertical velocity 
distribution at the base of the core region are at least 
similar to the bell-shaped profile resulting from an 
imaginary heat source below z = 0. Turner [20] has 
reported that it is not crucial that the matching be 
precise in its details. Obviously, the region very ctose 
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to the origin is not accurately modelled in this paper. 
The full Navier-Stokes equations must be used in 
that region. It is indeed a most interesting region, but 
its analysis must be left for future investigation. 

5.4. The effect of the weak downdraft on the 
core region 

In the solution of the core region equation in 
Section 2, it was assumed that the vertical velocity 
far from the axis was zero. Solution of the equations 
for the ground region in Section 4 indicates that 
outside the core region a weak downward flow is 
induced by the ground boundary layer. If this non- 
zero vertical velocity is included in the boundary 
conditions given by (3.6) the differential equations 
and boundary conditions become nonsimilar. 

To investigate the possible effect of the downflow 
on the core region solution, the nonsimilar equations 
have been solved approximately using the local 
similarity approach. The results have been reported 
by Chen [16]. The core region flow is affected only 
very slightly. 

6. SOME O~~VA~ONS ABOUT TORNADOES 

In this section an estimate of the magnitude of the 
heat source necessary to drive a tornado is presented. 
Computations are performed using two values of 
circulation, rrn = 47 x 103m2s-’ and rrn = 4.1 x 
105mZs-‘. The first of these corresponds to the 
circulation observed by Lewis and Perkins [14] near 
the Cleveland tornado of 8 June, 1953 and is also 
very close to the value estimated by Fujita [22] for 
the Fargo tornado of 20 June, 1957. The second 
value is the value estimated by Fujita [23] for the 
Tecumseh, Michigan tornado. It is probably un- 
reasonably large. The heat source is estimated using 
E = 0.67 x 10e3 and E = 0.01 for the two cases of f,. 

6.1. The method of computation 
The maximum tangential speed and the radial 

position where it occurs are related by 

rl,maxvl,max = 0.63l-,/2n (6.1) 

as can be seen by combining (3.15) and (3.16). The 
maximum velocity occurs at the base of the core 
region, that is, at y = z,+& This value is a function 
of E as was seen in Section 5. 

The vertical gradient of the heat generation rate Q 
is obtained from the definition of L (equation 2.6). 

Q= pc,vrH 
4ngBL3 (6.2) 

L3 can be eliminated from (6.2) by first noting that 
the velocity maximum occurs when t, = 4 (Fig. 3). 
Thus, 

L= rt ,max 
4(z, + 6)‘/4&“2 ’ 

Substituting L from (6.3) and rl,msx from (6.1) into 

(6.2) and rearranging gives the following expression 
for Q: 

Q’= 314 3 
vi,-. (6.4) 

When the properties of air at standard atmospheric 
pressure are used 

64npc,/(0.63)3& = 1.8 x lo6 J s-* rnm4. (6.5) 

6.5. Results 
When rm = 47 x 103m2 s-r, and a maximum 

tangential speed of 82 ms-‘, corresponding to 
Hoecker’s [24] data, are used, the values of the 
radius of maximum winds and the vertical heat 
generation gradient are computed to he 

rl.max = 57.6m, Q’= lOOkWm-‘when v = 5m2s-’ 

and 

r I,mnx = 57.6m, 0’ = 3 x 104kWm-’ for 
v = 75m2s-‘. 

When rm = 4.1 x 105m2s-‘, the values corres- 
ponding to v~,,, = 82 m s- ’ are 

r,,max = 795m, &’ = l~kWm2 for v = 44m2s-’ 

and 

rl,mpx = 795m, 

&’ = 3 x 104kWm-’ for v = 650m2s-r. 

The values of rl,,, are reasonable. The last value of v 
is rather large. Equation (6.5) indicates that for a 
given maximum velocity, the heat generation rate is 
a function of E only. When E decreases, z,+6 
increases. However, the group E~~*(z~+~)~‘~ de 
creases rapidly as E decreases. When E = 0.01, .a512(z, 
+&)3’4 =: 3 x lo-’ and when E = 0.67 x 10m3, ssi2(z, 
+&)3’4 = 9.9 x lo-*. Such large dependence on vis- 
cosity is unfortunate, since the value of v is so poorly 
known. 

6.3. Electrical discharges 
Considering a heat source 5 km high, the heat 

supplied to the vortices analyzed in Section 6.2 
ranges between 5 x 1O’kW and 1.5 x lo* kW. 
Watkins [4] estimated that the power dissipated by an 
electrical discharge of a discrete stroke nature (such 
as lightning) ranges between 10’ and lo9 kW if 
repetitive strokes occur at about lo-20 strokes per s. 
The atmospheric static electricity effects that accom- 
pany tornadoes are well-known. It has been reported 
by Jones [25] that lightning discharges occur at a 
rate of lo-20 per s in tornado-producing 
thunderstorms. 

7. CONCLUSIONS 

In Sections 2-5 an approximate analytical so- 
lution was obtained for the swirling flow due to a 
line heat source in a region of strong circulation. A 
special feature of the model is that it takes into 
account the presence of the boundary layer that 
forms near the ground beneath the vortex. The 



86 JWO-MIN CHEN and ROBERT G. WATTS 

viscous boundary layer near the ground induces a 
secondary flow inward toward the centerline of the 
vortex. It was shown in Section 5 that the resulting 
volume flow rate toward the center has a strong 
effect on the flow in the region near the vortex. 

The intensity of the line heat source required to 
provide the buoyant force necessary to ,drive an 
atmospheric vortex with velocities and length scales 
similar to those found in tornadoes was computed in 
Section 6. It was shown that a heat source whose 
magnitude ranges between 5 x 105kW and 1.5 
x 10s kW is sufficient to maintain even very large 

and intense tornadoes such as the Tecumseh, 
Michigan tornado. The values lie well within the 
range of the 105-lo9 kW estimated by Watkins [4] 
as being dissipated by lightning if repetitive strokes 
occur at lo-20 strokes per s. It must therefore be 
concluded that electrical discharges of a discrete 
nature can provide enough power to drive a tornado. 

The analysis presented here should be useful in 
modelling other types of buoyancy-driven vortices, 
such as fire storms and laboratory electrical vortices 
such as those created by Ryan and Vonnegut [3] 
and by Watkins [4]. 
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TOURBILLON STATIONNAIRE CREE PAR UNE SOURCE DE CHALEUR LINEAIRE 

Rbsum&On prbsente une analyse mathbmatique d’un tourbillon qui se forme au voisinage d’une source 
IinCaire de chaleur avec une circulation constante loin de la source de chaleur et du sol. Les rkgions 
proches de l’axe du tourbillon et proches du sol, appelk respectivement rtgion centrale et rigion de sol, 
sent trait&s sbparkment en utilisant les approximations de couche limite. La prtsence du sol induit un 
puissant &oulement secondaire vers le centre du tourbillon et proche du sol. Les deux rbgions sent 
raccordCs par des conditions de fluide non visqueux assez loin de l’axe du tourbillon et du sol, et en 
considbrant les dkbits volumiques pour la couche limite de sol et pour la rbgion centrale. La couche limite 
de sol a un effet important sur 1’6coulement de la rkgion centrale. Cet effet semble croitre quand la 
viscosit6 diminue. Les resultats sont utilisks pour estimer l’intensitt de la source tnergbtique n&cessaire 
pour alimenter une tornade. Les resultats sont exploitables dans des phtnomines tels que les tourbillons 

de flamme et les tourbillons pilot& tlectriquement en laboratoire. 
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EIN STATIONARER DURCH EINE LINIENFORMIGE 
WARMEQUELLE INDUZIERTER WIRBEL 

Zusammenfassung-Es wird die mathematische Behandlung eines Wirbels beschrieben, der sich urn eine 
linienfijrmige Warmequelle in einem Gebiet mit in weiter Entfernung von der Warmequelle und der 
Grundfllche konstanter Zirkulation bildet. Die Gebiete in der Nahe der Mittelhnie des Wirbels und an 
der Grundflache, genannt der Kern bzw. das Grundfllchengebiet, werden getrennt behandelt, wobei 
Grenzschichtnaherungsansftze benutzt werden. Durch die Anwesenheit der Grundfllche wird eine starke 
Sekundarstromung in Richtung des Zentrums des Wirbels in Wandnlhe induziert. Die beiden Gebiete 
werden verkniipft durch Anpassen der Grenzbedingungen mittels eines reibungsfreien Zwischengebiets, 
das weit von der Mittellinie des Wirbels und der Wand entfernt ist und durch Gleichsetzen der 
Volumenstrome, die an der Wandgrenzschicht in das Gebiet hinein und aufwarts in den Wirbelkem 
fuhren. Die Grenzschicht an der Wand hat einen grogen Einflug auf die Striimung im Kerngebiet. Der 
EinfluB scheint bei kleiner werdener Viskositat zuzunehmen. Die Ergebnisse werden benutzt, urn die 
Intensitat einer Energiequelle abzuschatzen, die erforderlich ist, urn einen Tornado zu verursachen. Die 
Ergebnisse sind weiter niitzlich bei der Analyse solcher Phlnomene wie durch Feuer verursachter Wirbel 

und im Labor elektrisch induzierter Wirbel. 

flBM_HCEHME CTALH4OHAPHOI-0 BMXPll HOfi AEtkTBMEM JlMHEfiHOr0 
HCTOYHMKA TEWIA 

AIIHOTSIUIU- npeAcTaBneH0 MaTeMaTwiecxoe 0nwaHiie ~0prmpoBaHm BHX~R OT mHeiiHor0 HCTOY- 

HWXa TeIlna B o6nacrn C 3aAaHHOii IlOCTOXHHOii UHpXynRUHefi BAanH OT HCTO'lHHKa Tellna H rpyHTa. 

06naCTii e6nwsw OCH BkiXpR H y rpyHTa, Ha3BaHHble, COOTBeTCTBeHHO, 06naCTnMii KAPa H rpyHTa, 

paCCMaTp&iBaIOTCX OTAenbHO B npa6nriwtenmr nOr~HH'iHOr0 CnOX. Hanmine rpyHTa Bb13bIBaeT 

cmbkioe BT~~HVH~~ TeveHue X ueHTpy BHX~X B6new rpye-ra. CoeMeueHHe 06eex 06nacTefi 

IlpOBOAHTCX IlyTtM CpaIUHBaHHR rpaHH'iHbIX yCnOBd 'iepe3 llpOMe*yTO'iHyfO 06naCTb, HaXOAXlUyWCX 

BAanW XaX OT OCH BliXpX, TaX W OT rpyHTa. H Ha OCHOBe ypaBHHBaHHX 06&MHbIX PaCXOAOB B 

uanpasnerfmi norpanw-4noro cnon Ha rpyHTe m B HanpaBneHm o6nacm sinpa. IlorpaHHrHblfi cnofi 

Ha I-pyHTe OKa3bIBaeT CHJlbHOe BJlHIlHWC Ha 06nacTb TeYeHHIl B SAP, llpH+?M TeM bonbwe, 9eM 

MeHbUIe BIlJKOCTb EHCIKOCTA. Pe3ynbTaTbl HCCneAOBaHHR HCnOnb3yK)TCR A,Wl OUeHKH HHTeHCHBHOCTH 

I(CTO’iHWKB 3HeplWi. QH XOTO@ IIPOHCXOAHT 3apOxAeHHe CMCPW. KpoMe TOTO, OHH MOQ’T 

oXa3aTbcn none3HbtMu TaXxe nnn aHam3a TaxHx neneHG4. xaX 0rHesbIe BHXPH npH nomapax H 

3neKTpwecxHe ~Hxpn. reHepHpyeMbIe Bna60paTOpHbIX ycnoewnx. 


